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What is SSH?

● SSH = Secure Shell
● Originally intended as “Encrypted Telnet”
● Allows remote shell (command-line) access
● Connection Encrypted Using Public Key 

Cryptography
● SSH Version 1: Developed 1995, Now Insecure
● SSH Version 2: Standardized 2006
● Only use SSH2!



  

Why use SSH?

● Useful for remote system administration
● Transfer files securely
● Run remote applications
● Secure OTHER communications
● Requires Little Bandwidth
● Industry Standard



  

SSH Clients

● Linux: OpenSSH; Usually Installed by Default
● OS X: OpenSSH; Installed by Default
● Windows: PuTTY, OpenSSH under Cygwin, 

Commercial SSH
● Android: ConnectBot + Others
● IOS: iSSH, Prompt, Others



  

About the Presentation

● Assumes OpenSSH on Linux for both Client 
and Server

● Some features may require relatively recent 
versions of OpenSSH



  

Basic Use

● ssh user@host.name



  

Basic Use

● ssh user@host.name



  

Verifying Who You're Connecting 
To

● The highlighted lines show you which host you 
are connecting to along with the key fingerprint.

● The key fingerprint is cryptographic proof that 
your connection is not being tampered with.

● Depending on your level of paranoia:
● Get the fingerprint from the system 

administrator
● Make your first connection from a 'trusted' 

network
● Just ignore it and hope its ok



  

What You Can Do Now

● Run Commands Remotely
● Install packages/services
● Configure applications
● Start/stop services

● Edit Files Remotely
● vi, nano, etc. (Masochists may even use emacs)
● Command-line only
● Plain Text Only



  

Login Environment

● After connecting
● /etc/motd, unless ~/.hushlogin
● Check /etc/nologin
● Drop privileges (switch to user)
● /etc/ssh/sshrc, ~/.ssh/rc
● Run shell or command

● SSH_CONNECTION
● <client ip> <client port> <server ip> <server port>



  

IPv6

● SSH works well over IPv6 (naturally)
● IPv6 Addresses should be specified in square 

brackets, e.g., [2600:3c03::f03c:91ff:fe93:f3fb]
● Or use a hostname

● Can be forced
● -6 to force IPv6
● -4 to force IPv4



  

Run a Single Command

● ssh user@host.name COMMAND



  

Remote GUI (X Forwarding)

● Headless/Remote Server?
● Application that “must” be GUI?
● No Problem!
● ssh -X user@host.name 

● Then run command

● ssh -X user@host.name command



  

Remote GUI (X Forwarding)



  

Getting Files From Here to There
(Or from There to Here)

● scp (Secure Copy)
● Basic form similar to cp

● scp [path1] [path2]

● Path can be a local path or remote path:
● user@host:/path/to/file 
● Relative paths from your home directory

● scp Documents/Presentation.pdf 
david@work:Documents/



  

Another Way to Move Files

● SFTP
● More like FTP, but encrypted via SSH

● GUIs Available
● gftp on Linux
● WinSCP on Windows
● FireFTP (In Firefox)



  

SSH Tunneling (Port Forwarding)

● Tunnel Arbitrary TCP Connections Across SSH
● Encrypted
● Authenticated
● Tunnel through Firewalls



  

SSH Tunneling



  

SSH Tunneling



  

SSH Tunneling (Syntax)

● Forward single point
● Add -L <localport>:<remotehost>:<remoteport>
● ssh -L8000:10.10.10.10:80 user@firewall 
● Open web browser to http://localhost:8000/ 

● Dynamic Proxy
● Add -D <localport>
● SOCKS 4/5 Protocol Support
● Works with any SOCKS-aware application



  

SSH Tunneling (Edge Cases)

● Reverse Tunnel
● Tunnels connections from server to client
● -R <remoteport>:<host>:<hostport>

● Allow others to use tunnels
● -g option
● Use with caution!

● Only do port forwarding
● -N (No Command)



  

A Word About Security

●SSH gets brute forced.  A lot.



  

Popular Brute Force Usernames

http://www.dragonresearchgroup.org/insight/sshpwauth-cloud.html



  

Popular Brute Force Passwords

http://www.dragonresearchgroup.org/insight/sshpwauth-cloud.html



  

Where are they coming from?

Source: Cisco Systems



  

Security Measures

● Use an alternate port (reduces noise, but is 
NOT security)

● Use a strong password (always a good idea)
● Use Fail2Ban (Firewall rules from too many bad 

logins)
● Use SSH Keys!



  

SSH Keys?

● An SSH Key 'replaces' your password
● Private key: kept by user to authenticate
● Public key: placed on servers to identify user

● ssh-keygen to create new key pair
● Use a passphrase!

● ssh-copy-id will copy the public key over



  

SSH Key Strength

● Typically 2048 bit RSA
● ~112 bits of entropy

● Not going to happen in an online attack
● Protect private key with passphrase
● Keep the private key private!
● On the other hand...

● If your local system is compromised, you have 
all kinds of problems



  

Avoiding the Passphrase

● ssh-agent caches the key for you
● eval `ssh-agent` to load into current session
● Type passphrase once
● Many desktop environments start ssh-agent (or 

a clone) for you
● gpg-agent can also function as an agent for 

SSH keys
● GPG Keys can also be used for authentication



  

SSH Access Control

● /etc/ssh/sshd_config
● PasswordAuthentication
● PubkeyAuthentication
● HostBased, ChallengeResponse, 

KeyboardInteractive, etc.
● AllowGroups, AllowUsers (intersection)
● DenyGroups, DenyUsers (union)
● UsePAM (default no, but most distros ship yes)

– Only account and session for key-based auth



  

SSHD Permissions

● AllowTCPForwarding
● PermitOpen

● AllowAgentForwarding
● X11Forwarding
● PermitTunnel (tun forwarding)
● PermitUserEnvironment



  

Shortcuts

● You could type something like this:
● ssh -X -L 8000:10.10.10.10:80 -p 2200 

johndoe@devserver.somecompany.com 

● Or you could set up to do:
● ssh dev

● In a day, I make 20+ SSH connections
● What would you do?



  

~/.ssh/config (Example)

Host dev

User johndoe

Hostname devserver.somecompany.com

Port 2200

ForwardX11 yes

LocalForward 8000 10.10.10.10:80



  

Speeding Up SSH

● SSH2 Allows Multiple Channels Per Connection
● SSH Multiplexing

● ControlMaster auto
● ControlPath ~/.ssh/master/%r@%h:%p
● ControlPersist yes



  

Stayin' Alive

● TCPKeepAlive [yes|no]
● TCP-level Keep Alive packets

● ServerAliveInterval [sec.]
● Encrypted packets requesting response from 

server.



  

Let's Bust Out of Here!

● Some venues block port 22
● More likely, allow limited ports
● Like... this venue.

● Alternate Port
● 443 if you're not running HTTPS on the server
● Most places just let 443 out



  

Layer 7 Firewalls

● SSH is encrypted!
● But the first step of the handshake is not
● SSH-2.0-OpenSSH_5.5p1 Debian-6



  

Really!



  

So what's left to do?

● Tunnel-in-tunnel
● openssl s_client → stunnel
● Bad for latency
● Virtually indistinguishable from HTTPS or other 

SSL traffic (it IS SSL traffic)

● Obfuscated SSH
● Requires patched client & server
● https://github.com/inf0/obfuscated-openssh



  

Fun Things
(For Some Definition of “Fun”)

● Copy a file between two hosts that can't directly 
communicate

● scp -3 host1:/file1 host2:/file2

● Force a user to run a certain command 
(sshd_config)

● Match User <username>
● ForceCommand <command>



  

Questions/Demos

● Questions?
● Comments?
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