

The Keys to Using SSH

David Tomaschik
RHCE, LPIC-1

System Administrator, Kennesaw State University
MSCS Student, SPSU

david@systemoverlord.com
http://systemoverlord.com

Special ALE Central Edition!

What is SSH?

● SSH = Secure Shell
● Originally intended as “Encrypted Telnet”
● Allows remote shell (command-line) access
● Connection Encrypted Using Public Key

Cryptography
● SSH Version 1: Developed 1995, Now Insecure
● SSH Version 2: Standardized 2006
● Only use SSH2!

Why use SSH?

● Useful for remote system administration
● Transfer files securely
● Run remote applications
● Secure OTHER communications
● Requires Little Bandwidth
● Industry Standard

SSH Clients

● Linux: OpenSSH; Usually Installed by Default
● OS X: OpenSSH; Installed by Default
● Windows: PuTTY, OpenSSH under Cygwin,

Commercial SSH
● Android: ConnectBot + Others
● IOS: iSSH, Prompt, Others

About the Presentation

● Assumes OpenSSH on Linux for both Client
and Server

● Some features may require relatively recent
versions of OpenSSH

Basic Use

● ssh user@host.name

Basic Use

● ssh user@host.name

Verifying Who You're Connecting
To

● The highlighted lines show you which host you
are connecting to along with the key fingerprint.

● The key fingerprint is cryptographic proof that
your connection is not being tampered with.

● Depending on your level of paranoia:
● Get the fingerprint from the system

administrator
● Make your first connection from a 'trusted'

network
● Just ignore it and hope its ok

What You Can Do Now

● Run Commands Remotely
● Install packages/services
● Configure applications
● Start/stop services

● Edit Files Remotely
● vi, nano, etc. (Masochists may even use emacs)
● Command-line only
● Plain Text Only

Login Environment

● After connecting
● /etc/motd, unless ~/.hushlogin
● Check /etc/nologin
● Drop privileges (switch to user)
● /etc/ssh/sshrc, ~/.ssh/rc
● Run shell or command

● SSH_CONNECTION
● <client ip> <client port> <server ip> <server port>

IPv6

● SSH works well over IPv6 (naturally)
● IPv6 Addresses should be specified in square

brackets, e.g., [2600:3c03::f03c:91ff:fe93:f3fb]
● Or use a hostname

● Can be forced
● -6 to force IPv6
● -4 to force IPv4

Run a Single Command

● ssh user@host.name COMMAND

Remote GUI (X Forwarding)

● Headless/Remote Server?
● Application that “must” be GUI?
● No Problem!
● ssh -X user@host.name

● Then run command

● ssh -X user@host.name command

Remote GUI (X Forwarding)

Getting Files From Here to There
(Or from There to Here)

● scp (Secure Copy)
● Basic form similar to cp

● scp [path1] [path2]

● Path can be a local path or remote path:
● user@host:/path/to/file
● Relative paths from your home directory

● scp Documents/Presentation.pdf
david@work:Documents/

Another Way to Move Files

● SFTP
● More like FTP, but encrypted via SSH

● GUIs Available
● gftp on Linux
● WinSCP on Windows
● FireFTP (In Firefox)

SSH Tunneling (Port Forwarding)

● Tunnel Arbitrary TCP Connections Across SSH
● Encrypted
● Authenticated
● Tunnel through Firewalls

SSH Tunneling

SSH Tunneling

SSH Tunneling (Syntax)

● Forward single point
● Add -L <localport>:<remotehost>:<remoteport>
● ssh -L8000:10.10.10.10:80 user@firewall
● Open web browser to http://localhost:8000/

● Dynamic Proxy
● Add -D <localport>
● SOCKS 4/5 Protocol Support
● Works with any SOCKS-aware application

SSH Tunneling (Edge Cases)

● Reverse Tunnel
● Tunnels connections from server to client
● -R <remoteport>:<host>:<hostport>

● Allow others to use tunnels
● -g option
● Use with caution!

● Only do port forwarding
● -N (No Command)

A Word About Security

●SSH gets brute forced. A lot.

Popular Brute Force Usernames

http://www.dragonresearchgroup.org/insight/sshpwauth-cloud.html

Popular Brute Force Passwords

http://www.dragonresearchgroup.org/insight/sshpwauth-cloud.html

Where are they coming from?

Source: Cisco Systems

Security Measures

● Use an alternate port (reduces noise, but is
NOT security)

● Use a strong password (always a good idea)
● Use Fail2Ban (Firewall rules from too many bad

logins)
● Use SSH Keys!

SSH Keys?

● An SSH Key 'replaces' your password
● Private key: kept by user to authenticate
● Public key: placed on servers to identify user

● ssh-keygen to create new key pair
● Use a passphrase!

● ssh-copy-id will copy the public key over

SSH Key Strength

● Typically 2048 bit RSA
● ~112 bits of entropy

● Not going to happen in an online attack
● Protect private key with passphrase
● Keep the private key private!
● On the other hand...

● If your local system is compromised, you have
all kinds of problems

Avoiding the Passphrase

● ssh-agent caches the key for you
● eval `ssh-agent` to load into current session
● Type passphrase once
● Many desktop environments start ssh-agent (or

a clone) for you
● gpg-agent can also function as an agent for

SSH keys
● GPG Keys can also be used for authentication

SSH Access Control

● /etc/ssh/sshd_config
● PasswordAuthentication
● PubkeyAuthentication
● HostBased, ChallengeResponse,

KeyboardInteractive, etc.
● AllowGroups, AllowUsers (intersection)
● DenyGroups, DenyUsers (union)
● UsePAM (default no, but most distros ship yes)

– Only account and session for key-based auth

SSHD Permissions

● AllowTCPForwarding
● PermitOpen

● AllowAgentForwarding
● X11Forwarding
● PermitTunnel (tun forwarding)
● PermitUserEnvironment

Shortcuts

● You could type something like this:
● ssh -X -L 8000:10.10.10.10:80 -p 2200

johndoe@devserver.somecompany.com

● Or you could set up to do:
● ssh dev

● In a day, I make 20+ SSH connections
● What would you do?

~/.ssh/config (Example)

Host dev

User johndoe

Hostname devserver.somecompany.com

Port 2200

ForwardX11 yes

LocalForward 8000 10.10.10.10:80

Speeding Up SSH

● SSH2 Allows Multiple Channels Per Connection
● SSH Multiplexing

● ControlMaster auto
● ControlPath ~/.ssh/master/%r@%h:%p
● ControlPersist yes

Stayin' Alive

● TCPKeepAlive [yes|no]
● TCP-level Keep Alive packets

● ServerAliveInterval [sec.]
● Encrypted packets requesting response from

server.

Let's Bust Out of Here!

● Some venues block port 22
● More likely, allow limited ports
● Like... this venue.

● Alternate Port
● 443 if you're not running HTTPS on the server
● Most places just let 443 out

Layer 7 Firewalls

● SSH is encrypted!
● But the first step of the handshake is not
● SSH-2.0-OpenSSH_5.5p1 Debian-6

Really!

So what's left to do?

● Tunnel-in-tunnel
● openssl s_client → stunnel
● Bad for latency
● Virtually indistinguishable from HTTPS or other

SSL traffic (it IS SSL traffic)

● Obfuscated SSH
● Requires patched client & server
● https://github.com/inf0/obfuscated-openssh

Fun Things
(For Some Definition of “Fun”)

● Copy a file between two hosts that can't directly
communicate

● scp -3 host1:/file1 host2:/file2

● Force a user to run a certain command
(sshd_config)

● Match User <username>
● ForceCommand <command>

Questions/Demos

● Questions?
● Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

