
CS 8803: Introduction to Information Security
Final Project: A Security Analysis, Proof of Concept, and Suggested

Improvements to KeePassX, an Open Source Password Manager
David Tomaschik

david@systemoverlord.com

I. Introduction

KeePassX is a portable version of KeePass, a popular password management tool. According to

the KeePassX homepage, “KeePassX is an application for people with extremly high demands on

secure personal data management.”1 The most recent version, 0.4.3, was released on March 7, 2010.2

This indicates that KeePassX is under reasonably active development.

In June of 2009, a discussion on the cryptography@metzdowd.com mailing list revealed that

KeePassX fails to “lock” (prevent from being swapped to disk) certain data into memory.3 A cursory

examination of the source of the most recently released version (0.4.3) reveals that no improvements to

locking have been implemented. Further examination of the source also indicated that sensitive data is

left in memory when the application exits. This lead to a concern that data from an application

claiming to be for “people with extremely high demands on secur[ity]” might leak some information

after being closed.

II. Background

Modern operating systems use areas of the disk known as “swap space” to extend the systems

“virtual memory,” allowing applications that need more memory to have it allocated by writing parts of

memory back to disk in what is called a “swap out”. When that data is again needed, it can be

“swapped in” by reading the data back into the system memory. While this has performance benefits, it

has the disadvantage of leaving a copy of memory contents on the hard disk of the computer, often

without the knowledge of the user. In the case of programs that store sensitive data (such as a password

1 KeePassX Homepage. http://www.keepassx.org/
2 KeePassX 0.4.3 Released. http://www.keepassx.org/news/2010/03/213
3 P. Metzger, Re: password safes for mac. Cryptography@metzdowd.com. http://www.mail-

archive.com/cryptography@metzdowd.com/msg10580.html

mailto:Cryptography@metzdowd.com
mailto:cryptography@metzdowd.com

manager), this can result in passwords being written to disk in an unencrypted state.

Because of these implications, the POSIX 2001 specification includes a set of functions to

prevent regions of memory from being swapped to disk. These functions include mlock and

mlockall. According to the mlock(2) manual page, “mlock() and mlockall() respectively

lock part or all of the calling process's virtual address space into RAM, preventing that memory from

being paged to the swap area.”4 Programs storing sensitive data should take steps to prevent that data

from being swapped to disk, including ensuring any memory pages with sensitive data are locked into

RAM. Memory must be locked before any sensitive data is written to it to ensure that it is not possible

to swap out that memory in the interim period.

Sensitive data should be overwritten before being returned to the operating system via delete

or free. Data that is not overwritten is may be vulnerable to data remnance attacks and cold-boot

attacks.5 Operating systems generally do not overwrite data before allocating it to a program, meaning

that data left behind by an application might be read by another, potentially malicious, application.

III. KeePassX's Design

KeePassX is written in C++ using the Qt Framework from Nokia6 for user-interface components

and many data structures. This choice seems to stem from a desire to easily port the application to a

variety of platforms, and has allowed KeePassX to be built for Windows, Mac, and Linux.7 KeePassX

encrypts its database files using a user's choice of either AES (internally referred to by its AES-

competition name, Rijndael) or another AES competitor, Twofish. Users may supply a password, key

file, or a combination of both to provide key material for encrypting the user's password database.8

One notable strength of KeePassX is that the password provided by the user is significantly

4 mlock(2) manual page, as included with Ubuntu Linux 10.10.
5 J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J.

Feldman, Jacob Appelbaum, and Edward W. Felten. 2009. Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52, 5 (May 2009), 91-98. DOI=10.1145/1506409.1506429 http://doi.acm.org/10.1145/1506409.1506429

6 Qt – A Cross-Platform Application and UI Framework. http://qt.nokia.com/
7 KeePassX – Downloads. http://www.keepassx.org/downloads/
8 KeePassX – Features. http://www.keepassx.org/features/

strengthened by performing an SHA-256 hash of the provided password, then encrypting that hash with

Rijndael/AES or Twofish through a user-configurable number of rounds, and finally taking an SHA-

256 hash of this resultant value. This key strengthening process has the advantage of significantly

slowing an attack against the user's password and inhibiting the ability of an attacker to predict any part

of the key actually used to encrypt the database file.

One “feature” of KeePassX that disappoints me is the password strength meter provided by the

user interface. It shows an improvement of 8 bits per character of the password, but this is clearly

overstating the strength of the password. Even a random ASCII password has a maximum entropy of

6.6 bits/character, assuming the use of the full 94 printable ASCII characters.9 NIST has published

various formulas for estimating the entropy of a password10 based on work reaching as far back as

Shannon's work in 1948-1951.11

IV. Source Analysis & Vulnerabilities

I began by reviewing the source code to the version of KeePassX that is available as a part of

Ubuntu Linux 10.10/Maverick Meerkat – version 0.4.3-1. I retrieved the source by executing “apt-get

source keepassx”, which extracted the source into a working directory.

Because KeePassX is built for Windows, Apple's Mac OS X and a variety of Linux platforms,

there are some sections of code which use #defines for portability reasons. Because of my

familiarity with the platform, I focused my analysis and improvements on the Linux build.

One platform-related difference is in memory locking – on Windows, VirtualLock is used,

and on POSIX-compliant systems, mlock is used. Due to this, the original authors wrote a function

called lockPage as a wrapper to either locking function. Searching through the source code reveals that

only a variable labeled as “sessionkey” is locked into RAM. This sessionkey is a randomly-

generated value used as a key to encrypt (with an RC4 stream cipher) the database master key and

9 NIST publication 800-63, Appendix A, p 63.
10 Ibid.
11 C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, v. 27, pp. 379-423, 623-

656, July, October 1948, http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

individual passwords while the program is running. This encryption is handled by a SecString class

that provides lock and unlock operations to transform between RC4 encrypted and plaintext. This

encrypted data is not locked into RAM, however the plaintext is overwritten when it is locked back.

However, if swapping were to occur while the SecString was “unlocked”, plaintext passwords

could be written to disk.

In several places, various copies are made of the database master key, including into plain

QByteArrays which offer no protection against swapping to disk (neither locking nor encryption)

and are not overwritten before being discarded. This is particularly obvious within

src/Kdb3Database.cpp where the functions for setting up the final key do not overwrite their

data when copying among different character sets (used for legacy database versions). These functions

include Kdb3Database::setPasswordKey, Kdb3Database::setFileKey, and

Kdb3Database::setCompositeKey.

Just as bad is Kdb3Database::loadReal, where the strengthened version of the master

key (called FinalKey) is stored in a plain 32-byte quint8 array. This is not locked against swapping,

and is not overwritten before the function exits (the array exists on the stack). This leads to the key that

is actually being used to encrypt/decrypt the database being stored in unprotected memory and

potentially being left behind after program execution.

A major shortcoming in the security of KeePassX is in fact within the Qt libraries used by the

application. Passwords are edited and displayed with a control called “QLineEdit”. Because

passwords are passed to the control, it is hard to discern whether or not the password will be

overwritten in memory at the end of use. The copy of the password inside KeePassX is overwritten,

and if only a pointer is used by QLineEdit, it is likely comparatively safe, however, without an in-

depth analysis of the Qt libraries, it's impossible to ascertain if the value is copied at any point.

Overall, the authors of KeePassX have done a fairly good job of writing a well-planned

password storage application. I found no indication of any backdoors or flaws in the file handling that

would lead to KeePass databases being compromised. While the risk of having sensitive data swapped

or left behind is small, research such as the Cold Boot Attacks by Halderman, et al., shows that this is a

new frontier for attacking cryptographic products. While KeePassX appears strong, it can be improved

to resist the next generation of attacks.

V. Proof of Concept

Because of the difficulty in attacking a physical system for a cold-boot attack, I utilized a virtual

environment for my proof of concept. Using QEMU12 (an Open Source Virtualization tool), I created a

fresh Ubuntu 10.10 install with 512MB of RAM, installed the distributed version of KeePassX. I then

built a small test KeePass Database with 2 accounts, including one labeled “Secret Site” with username

“david” and password “secretpassword.” QEMU offers a command pmemsave that allows you to

dump memory to a file on disk.13 I used “pmemsave 0 0x20000000 FILE.img” to dump

memory images.

At first, I attempted to use grep to find relevant portions of the memory region, but was

unsuccessful. I realized that the data handled by the application was stored as QStrings, which are

UTF-16 encoded strings, similar to Java. I wrote a small python script to convert ASCII to UTF-16

strings and print them in hexadecimal14. Opening the memory image file in hexedit allowed me to

search for these byte strings easily.

Even after the program has exited, some information can be revealed from within the memory

dump. For example, it can be determined what sites a user has passwords for as the metadata about

each password is stored in the clear.

12 About QEMU. http://wiki.qemu.org/Main_Page
13 C. Neilson, “Memory Analysis Project Setup,” University of Denver.

http://web.cs.du.edu/~mitchell/forensics/projects/memory/Setup.pdf
14 See Appendix IV.

A memory dump with a password edit window open, but the password hidden behind a series of

asterisks, even reveals the secret password, though this is not terribly surprising. The source shows that

the field is loaded as soon as the edit window is opened.

I must acknowledge that nothing in my proof of concept is particularly glaring as far as a

security risk goes. The authors of KeePassX have done a good job of ensuring that particularly

sensitive data (keys & passwords) spends as little time as possible unencrypted in RAM.

VI. Improvements Made

I have written 3 separate patches for the Linux port of KeePassX, specifically using the Ubuntu

and Debian patching tools. The full text of the patches is included in the appendices. It is my intent to

submit these patches for inclusion both in the Debian and Ubuntu builds of KeePassX as well as

upstream after cleaning them up somewhat. These patches specifically target two security concerns

and one user interface concern.

The first patch (01-mlockall.patch) calls mlockall and requests that all currently used

memory (MCL_CURRENT) and future (MCL_FUTURE) memory be locked into RAM. This has the

benefit of protecting the entire process space from being written to disk by a swap-out. Unfortunately,

because KeePassX is a GUI program, this exceeds the default limit of 64 kilobytes for locked memory.

On a 64-bit system, opening a 1.2 MB KeePass Database results in a process with a resident size of

approximately 4 MB, so this is not just an opportunity to squeeze a little bit more out via optimization.

Illustration 1: Website information is visible

Illustration 2: More visible website information

Illustration 3: Passwords visible when edit window open, but password hidden

Fortunately, since Linux 2.6.9 introduced capabilities, we can provide the process with the

CAP_IPC_LOCK capability, which allows it to lock an unlimited amount of its memory.

CAP_IPC_LOCK is granted in a Debian postinst script with the command: /sbin/setcap

cap_ipc_lock+ep /usr/bin/keepassx. Given a sufficiently large KeePass database on a

system with a very limited amount of memory, it might be possible to create a denial of service

situation. However, since KeePassX is not a network-connected service, is used by a user from a GUI,

and is (or at least should be) almost exclusively used by the owner of a system on a single-user system,

this risk is probably very minimal. It is, however, a trade-off for the benefits of having sensitive data

not written to disk.

My second patch (02-overwrite-before-free.patch) makes an effort to ensure

memory space that contains sensitive data is overwritten before it is returned to the system. This is

most important for objects allocated on the heap, but I also made an effort to do it for particularly

sensitive data structures on the stack (for example, the strengthened key that is used to encrypt the

entire database). Specifically, the following sensitive allocations are addressed: the FinalKey and

the raw file buffer in Kdb3Database::loadReal, the FinalKey and buffers for storage of

unencrypted and encrypted data in Kdb3Database::save, the key schedule for the implementation

of RC4 used to encrypt session data in RAM, and the encrypted data in the SecString class

(overwritten on destruction).

The third patch is less about the security of KeePassX and more about the false sense of security

that the current “strength meter” gives to the end user. By giving each character 8 bits of “strength”

(entropy), they cause users to vastly overestimate the strength of their password. User-generated

passwords without dictionary or composition rules are valued at 1-2 bits of entropy per character.15 My

patch implements the rules from NIST publication 800-63, but continues to display a full strength bar

for 128 bits of entropy. Under the NIST guidelines, it would require a 112 character long password to

15 NIST publication 800-63, Appendix A, p 63.

reach 128 bits of entropy, which is unlikely to be commonly used by users, but is a substantial

difference from the 16 character password that the original KeePassX suggests is sufficient.

VII. Suggested Improvements

A large improvement could be made by extending the QLineEdit class to provide a secure

version guaranteed not to copy the contents you provide it so that a developer could pass it an address

that is locked in RAM without needing to mlock the entire process space. There is no such guarantee

with the current QLineEdit, even if it is likely the case.

Additionally, there is no reason to store the unencrypted version of the user's password in the

text field until the user requests to see the password. If the user requests that it be displayed, or asks to

have the password copied to the clipboard, the application could decrypt the RC4 encrypted password

at that time. This would result in many operations never decrypting the password, further reducing the

risk of the password being compromised.

A thorough analysis of KeePassX could result in modifications to reduce the need to lock the

entire process space, however this would likely require writing an allocator to create objects in the

pages locked into RAM to avoid exceeding the 16-page (64-kbyte) limit. This would be a major effort

to re-engineer the manner in which sensitive data is handled in KeePassX.

The strength meter could be further improved by examining the character set being used by the

user to adjust the relative per-character entropy. While running a full dictionary check is probably

impractical, it's clear that “!22pSzzk” is stronger than “agklnnup” by virtue of the larger key space.

VIII. Conclusion

With the ever-growing set of online services, users are now responsible for managing more

accounts and more passwords than ever before. For users to be able to use passwords with more than

the most basic amount of security, it seems inescapable that they will need some manner to record

them. Password management programs like KeePassX fill that void by providing a secured storage

mechanism to allow users to avoid a sticky note on the side of their monitor.

My changes to KeePassX are documented in the Appendices as well as available from my

launchpad PPA at https://launchpad.net/~matir/+archive/ppa. I will be submitting my changes

upstream and making them available on my personal website after feedback from this course.

KeePassX is a robust and feature-rich program that has thwarted my efforts to discover any

major weaknesses. When used on a single-user system, particularly with encrypted swap, it is highly

unlikely that any sensitive data will be leaked. The most likely way for a determined adversary to gain

access to a user's accounts will be through service weaknesses, predictable password reset options, or

the ever-popular $5 wrench16. It's highly unlikely that KeePassX will be the source of a compromise,

and with continued development, that risk will be mitigated even further.

16 XKCD by Randall Munroe: http://xkcd.com/538/ (Licensed under CC-BY-NC 2.5)

http://xkcd.com/538/
https://launchpad.net/~matir/+archive/ppa

Appendix I: 01-mlockall.patch

Description: Lock all memory
Origin/Author: David Tomaschik <david@tuxteam.com>
--- a/src/lib/SecString.cpp
+++ b/src/lib/SecString.cpp
@@ -92,15 +92,12 @@

 void SecString::generateSessionKey(){
 sessionkey = new quint8[32];
- if (!lockPage(sessionkey, 32))
- qDebug("Failed to lock session key page");
 randomize(sessionkey, 32);
 RC4.setKey(sessionkey, 32);
 }

 void SecString::deleteSessionKey() {
 overwrite(sessionkey, 32);
- unlockPage(sessionkey, 32);
 delete[] sessionkey;
 }

--- a/src/lib/tools.cpp
+++ b/src/lib/tools.cpp
@@ -219,24 +219,12 @@
 return true;
 }

-bool lockPage(void* addr, int len){
-#if defined(Q_WS_X11) || defined(Q_WS_MAC)
- return (mlock(addr, len)==0);
-#elif defined(Q_WS_WIN)
- return VirtualLock(addr, len);
-#else
- return false;
-#endif
+bool lockAll(){
+ return (mlockall(MCL_CURRENT|MCL_FUTURE)==0);
 }

-bool unlockPage(void* addr, int len){
-#if defined(Q_WS_X11) || defined(Q_WS_MAC)
- return (munlock(addr, len)==0);
-#elif defined(Q_WS_WIN)
- return VirtualUnlock(addr, len);
-#else
- return false;
-#endif
+bool unlockAll(){
+ return (munlockall()==0);
 }

 bool syncFile(QFile* file) {
--- a/src/lib/tools.h
+++ b/src/lib/tools.h
@@ -44,8 +44,8 @@
 QString makePathRelative(const QString& Abs,const QString& Cur);

 QString getImageFile(const QString& name);
 bool createKeyFile(const QString& filename,QString* err, int length=32, bool
Hex=true);
-bool lockPage(void* addr, int len);
-bool unlockPage(void* addr, int len);
+bool lockAll();
+bool unlockAll();
 bool syncFile(QFile* file);
 void installTranslator();
 bool isTranslationActive();
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -49,6 +49,9 @@

 int main(int argc, char **argv)
 {
+ // Lock all RAM as early as possible
+ lockAll();
+
 setlocale(LC_CTYPE, "");

 #if defined(Q_WS_X11) && defined(AUTOTYPE)

Appendix II: 02-overwrite-before-free.patch

Description: Try to overwrite sensitive memory before giving it up
Origin/Author: David Tomaschik <david@tuxteam.com>
--- a/src/Kdb3Database.cpp
+++ b/src/Kdb3Database.cpp
@@ -512,8 +512,10 @@
 }

 #define LOAD_RETURN_CLEANUP \
+ memset(FinalKey,0,sizeof(FinalKey)); \
 delete File; \
 File = NULL; \
+ memset(buffer,0,sizeof(buffer)); \
 delete[] buffer; \
 return false;

@@ -548,7 +550,8 @@
 quint8 FinalRandomSeed[16];
 quint8 ContentsHash[32];
 quint8 EncryptionIV[16];
-
+ quint8 FinalKey[32];
+
 total_size=File->size();
 char* buffer = new char[total_size];
 File->read(buffer,total_size);
@@ -593,8 +596,6 @@
 MasterKey.unlock();

KeyTransform::transform(*RawMasterKey,*MasterKey,TransfRandomSeed,KeyTransfRounds)
;

- quint8 FinalKey[32];
-
 SHA256 sha;
 sha.update(FinalRandomSeed,16);
 sha.update(*MasterKey,32);
@@ -632,6 +633,7 @@

 if(memcmp(ContentsHash, FinalKey, 32) != 0){
 if(PotentialEncodingIssueLatin1){
+ memset(buffer,0,sizeof(buffer));
 delete[] buffer;
 delete File;
 File = NULL;
@@ -642,6 +644,7 @@
 return loadReal(filename, readOnly, true); // second try
 }
 if(PotentialEncodingIssueUTF8){
+ memset(buffer,0,sizeof(buffer));
 delete[] buffer;
 delete File;
 File = NULL;
@@ -740,7 +743,8 @@
 LOAD_RETURN_CLEANUP

 }

- delete [] buffer;
+ memset(buffer,0,sizeof(buffer));
+ delete[] buffer;

 hasV4IconMetaStream = false;
 for(int i=0;i<Entries.size();i++){
@@ -1483,7 +1487,9 @@
 CTwofish twofish;
 if(twofish.init(FinalKey, 32, EncryptionIV) == false){
 UNEXP_ERROR
- delete [] buffer;
+ memset(buffer,0,sizeof(buffer));
+ memset(FinalKey,0,sizeof(FinalKey));
+ delete[] buffer;
 return false;
 }
 EncryptedPartSize = (unsigned
long)twofish.padEncrypt((quint8*)buffer+DB_HEADER_SIZE,
@@ -1491,7 +1497,9 @@
 }
 if((EncryptedPartSize > (0xFFFFFFE - 202)) || (!EncryptedPartSize &&
Groups.size())){
 UNEXP_ERROR
- delete [] buffer;
+ memset(buffer,0,sizeof(buffer));
+ memset(FinalKey,0,sizeof(FinalKey));
+ delete[] buffer;
 return false;
 }

@@ -1499,11 +1507,15 @@

 if (!saveFileTransactional(buffer, size)) {
 error=decodeFileError(File->error());
- delete [] buffer;
+ memset(buffer,0,sizeof(buffer));
+ memset(FinalKey,0,sizeof(FinalKey));
+ delete[] buffer;
 return false;
 }
-
- delete [] buffer;
+
+ memset(buffer,0,sizeof(buffer));
+ memset(FinalKey,0,sizeof(FinalKey));
+ delete[] buffer;
 //if(SearchGroupID!=-1)Groups.push_back(SearchGroup);
 return true;
 }
--- a/src/crypto/arcfour.cpp
+++ b/src/crypto/arcfour.cpp
@@ -28,7 +28,7 @@
 quint32 w;

 for(w = 0; w < 256; ++w)
- S[w] = static_cast<quint8>(w); // Fill linearly

+ S[w] = static_cast<quint8>(w); // Identity permutation

 const quint8 btBufDep = static_cast<quint8>((length & 0xFF) << 1);

@@ -55,4 +55,11 @@
 t = S[i] + S[j]; // Generate random byte
 dst[w] = src[w] ^ S[t]; // XOR with PT
 }
+
+ // Overwrite temporary value
+ t = 0;
+
+ // Overwrite key schedule
+ for(w = 0; w < 256 ; ++w)
+ S[w] = 0;
 }
--- a/src/lib/SecString.cpp
+++ b/src/lib/SecString.cpp
@@ -34,6 +34,7 @@
 }

 SecString::~SecString(){
+ overwrite((unsigned char *)crypt.data(), crypt.length());
 lock();
 }

@@ -108,10 +109,8 @@
 }

 SecData::~SecData(){
- if (!locked){
- for (int i=0; i<length; i++)
- data[i] = 0;
- }
+ for (int i=0; i<length; i++)
+ data[i] = 0;
 delete[] data;
 }

Appendix III – 03-entropy.patch

Description: Use the NIST 800-63 estimation for password entropy
Origin/Author: David Tomaschik <david@tuxteam.com>
Index: keepassx-0.4.3/src/dialogs/EditEntryDlg.cpp
===
--- keepassx-0.4.3.orig/src/dialogs/EditEntryDlg.cpp 2009-08-31 12:44:21.000000000
-0400
+++ keepassx-0.4.3/src/dialogs/EditEntryDlg.cpp2010-12-02 21:08:41.140217296 -0500
@@ -101,11 +101,7 @@

 // MX-COMMENT: This call is not needed. Both Passwords fields will always
have the same value
 OnPasswordwLostFocus();
- int bits=(Password.length()*8);
- Label_Bits->setText(tr("%1 Bit").arg(QString::number(bits)));
- if(bits>128)
- bits=128;
- Progress_Quali->setValue(100*bits/128);
+ updateEntropy();
 Edit_Attachment->setText(entry->binaryDesc());
 Edit_Comment->setPlainText(entry->comment());
 InitGroupComboBox();
@@ -259,10 +255,7 @@
 void CEditEntryDlg::OnPasswordTextChanged()
 {
 Edit_Password_w->setText(QString());
- int bits=(Edit_Password->text().length()*8);
- Label_Bits->setText(QString::number(bits)+" Bit");
- if(bits>128)bits=128;
- Progress_Quali->setValue(100*bits/128);
+ updateEntropy();
 }

 void CEditEntryDlg::OnPasswordwTextChanged()
@@ -448,3 +441,21 @@
 }
 #endif
 }
+
+void CEditEntryDlg::updateEntropy(){
+ // This is probably not the best place to do this,
+ // but we have access to the UI elements here.
+ int len=Edit_Password->text().size();
+ int entropy=0;
+
+ // Calculations based on NIST 800-63
+ if(len<=8)
+ entropy=len*2+2; // First character is 4 bits, all others are 2.
+ else if(len <= 20)
+ entropy=18+1.5*(len-8); // 18 bits for first 8 chars, then 1.5 bpc
+ else
+ entropy=16+len; // 36 bits for first 20 chars, then 1bpc
+
+ Label_Bits->setText(tr("%1 Bit").arg(QString::number(entropy)));
+ Progress_Quali->setValue((entropy >= 128)?(100):(100*entropy/128));
+}

Index: keepassx-0.4.3/src/dialogs/EditEntryDlg.h
===
--- keepassx-0.4.3.orig/src/dialogs/EditEntryDlg.h 2009-03-18 08:09:20.000000000
-0400
+++ keepassx-0.4.3/src/dialogs/EditEntryDlg.h 2010-12-02 21:08:41.140217296 -0500
@@ -63,6 +63,7 @@
 private:
 virtual void paintEvent(QPaintEvent*);
 virtual void resizeEvent(QResizeEvent *);
+ virtual void updateEntropy();

 int IconIndex;
 bool pNewEntry;

Appendix IV – Python utf16 Converter

#!/usr/bin/python
import sys

print ''.join(["%02X"%ord(x) for x in sys.argv[1].encode("UTF-16")]).strip()

