GnuPG: Open Encryption,

Sighing and Authentication

David Tomaschik, RHCE, LPIC-1
<david@systemoverlord.com>
http://systemoverlord.com

mailto:david@systemoverlord.com

What is GhuPG?

GnuPG is the GNU project's complete and free
Implementation of the OpenPGP standard as
defined by RFC4880 . GnuPG allows to encrypt
and sign your data and communication, features a
versatile key management system as well as
access modules for all kinds of public key
directories. GnuPG, also known as GPG, is a
command line tool with features for easy
Integration with other applications. A wealth of
frontend applications and libraries are available.
Version 2 of GnuPG also provides support for
S/MIME.

OK. What i1s GhuPG?

Implementation of public-key cryptography
Conforms to an open standard (OpenPGP)

Allows for:

Encryption of Data & Communication
Signing of Data & Communication
Authentication

About this presentation

Not a "cookbook” for GPG
Overview of what you can do
Some technical points simplified

GPG has excellent man pages and
documentation

Background

Terminology
Motivations
General Theory

Getting Started

Key Generation
Choices
Key Signing

Best Practices

Threat Modeling
Key Separation

Integration & Uls
Uls
E-malil
Advanced Topics

Smart Cards
Authentication

Terminology

PGP — Pretty Good Privacy

Original implementation, 1991, by Phil Zimmerman

Source Available until 2000

OpenPGP — Standard for implementations
RFC 4880 (Replaced RFC 2440) (Message format)

RFC 3156 (e-mail format, PGP/M
GnuPG — GNU-Project, GPL Im

Mostly PGP Compatible
Implements all of RFC 4880

ME)
nlementation

Motivations: Encryption

Protect messages against being read except by
Intended recipient(s).

Intended recipient could be yourself.

Can exchange secret communications without
needing any pre-shared secrets.

Motivations: Signing

Digital signatures prove that you wrote/signed a
given chunk of data. (Non-repudiation)

Used heavily for code signing, signed
packages, etc.

Message integrity (unmodified)

Encryption Signing
Anyone with the Anyone with the
private key can private key can sign a
decrypt message message
Have to know what No proof of WHEN it
key to encrypt to was signed

(anyone can generate

No way to prove that
a key with any UID) y o b

you did NOT write a
message

How it Works (Simplified)

Public Key Encryption = Encryption

Pair of Keys (Public, Sender uses public
Private) Key to encrypt

A message encrypted Recipient uses private
to one key can only Key to decrypt

be decrypted by the S

other key Signing

Computationally Signer uses private
infeasible to reverse Key to sign (encrypt)

calculation Recipient uses public
Key to verify (decrypt)

Some Technical Detalls

Messages are not
really encrypted with
public key
cryptography
Encrypted with
symmetric
cryptography
Key then encrypted
with public-key
cryptography

Likewise, messages
not signed across the
entire message

Hash Is calculated
Signed with public-key
cryptography

Signing + encryption
Signed first
Only recipient verifies

OpenPGP Algorithms

Public-key Symmetrical
(Asymmetrical) IDEA
RSA(*) 3DES
DSA CAST5
ElGamal AES (*)
(Future) ECC Blowfish
Twofish

(*) Most often used

OpenPGP Algorithms

Compression Hashing

ZIP MD-5

ZLIB (%) SHA-1 (%)

BZIP2 RIPE-MD/160

SHA-2 (Family)
SHA-256
SHA-384

SHA-512
SHA-224

(*) Most often used

Getting Started: Key Generation

$ gpg --gen-key
Please select what kind of key you want:

(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize 1s 2048 bits

Algorithm Choice

RSA

"Safe bet” — very commonly used in a variety of
applications

Based on Integer Factorization Problem
DSA/ElGamal

A few cryptographers suggest it is SLIGHTLY
stronger

Less researched
Based on Discrete Logarithm Problem
Both are believed to be secure

Key Length

Do not generate new 1024 bit keys!

NIST suggests 2048 is secure until 2030.

3072 secure until ~2040.
4096 secure until ~2050.

Quantum computing could change everything.
Topic for another day, and probably another group.

Estimates against enterprise/government level
attackers.

Keylength.com

Getting Started: Key Generation

Please specify how long the key should be valid.

O = key does not expire
<n> = key expires 1n n days
<n>w = key expires 1n n weeks
<n>m = key expires 1n n months
<n>y = key expires in n years

Key 1s valid for? (0) 1d
Key expires at Thu 17 Mar 2011 11:06:24 PM EDT
Is this correct? (y/N) vy

Key Expiration

EXxpires Never expires
Key will fall out of use No need to update
If you lose private key date or regenerate
Update key May never fall out of
periodically use Iif you lose your

Regenerate key and key or compromised

get new signatures

Getting Started: Key Generation

You need a user ID to identify your key; the software constructs
the user ID

from the Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: David Tomaschik
Email address: david@example.com
Comment: Demo Key Only
You selected this USER-ID:
"David Tomaschik (Demo Key Only) <david@example.com>"

Change (N)ame, (C)omment, (E)mail or (0)kay/(Q)uit? o

Your Key

gpg: key 36D884AA marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1l signed: 0 trust: 0-, 0g, On, Om, Of, 1lu
gpg: next trustdb check due at 2011-03-18
pub 2048R/36D884AA 2011-03-17 [expires: 2011-03-18]
Key fingerprint = 5C2E 2066 FB73 5DDC 3EOF

EOD7 1D4C 7FE2 36D8 84AA
uid David Tomaschik (Demo Key Only)
<david@example.com>
sub 2048R/AB130331 2011-03-17 [expires: 2011-03-18]

Demo: Key Generation

gpg --gen-key

Getting Started: Finding Keys

gpg --recv-keys <keyid>

gpg --recv-keys 5DEA789B
gpg --search-keys <UID substring>

gpg --search-keys david@systemoverlord.com
Keyserver

pool.sks-keyservers.net
pgp.mit.edu

gpg --refresh-keys

mailto:david@systemoverlord.com

Getting Started: Sending Keys

gpg --send-key

Make sure you really want the key out there
Don't publish test keys

Use again after signing keys

Only if the original key was on the keyserver
Considered rude to publish someone's key

Why sign keys?

Alice wants to e-mail Carol, but doesn't have
her key

Alice downloads Carol's key from a keyserver

But walit! Anyone could generate a key for
carol@example.com

Never forget who might have access to e-mail

mailto:carol@example.com

Alice knows Bob who knows Carol

Alice has met Bob, verified Bob's key, signed
Bob's key

Bob has met Carol, verified Carol's key, signed
Carol's key

If Alice trusts Bob, Alice can believe this key
really belongs to Carol

Demo: Key Signing

gpg --sign-key

Web of Trust

Connections of signatures between users/keys

gpg —
Open

ISt-sigs

PGP model instead of PKI (Certificate

Authorities)

Some CAs may not be trustworthy, so some
consider Web of Trust superior

Certainly individuals | trust more than many CAs

Keysigning Parties/Events

Help expand your Web of Trust

Helps verify not only those at party, but also those
just past that point

Most effective in cases where you want to
communicate within that "social circle”

Signing Philosophies

|ID-Based E-mail based
Present ID (often 2) Signer sends
Match Names to UIDs e_ncrypted email to
Sian K sighee
ign Ke . .
: i Signee responds with
signed emalil

Proves control of e-
mail address

Best Practices: Key Security

Keep a copy of your key In a secure location

Use a strong passphrase

If the file that contains your key iIs compromised, it
IS encrypted with this passphrase

Keep a pre-generated revocation certificate
offline "just in case”

This should be secured too

Best Practices: Threat Modeling

U.S. Government

U.S. v. Boucher

Probably nothing will
protect you

Foreign Government

Might have law
compelling you to
disclose passphrase

Only If you are there
or commit crime there

Corporation

Unlikely to have
resources

Termination for
Improper computer
use

Malicious Attacker

Theft of Key
Keylogger

Threat Modeling

_IH CRYPTO HERD’EL\

IMAGINATION

HIS LAPTDPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
EUJHER TO CRACK \T-

NO GooD! IT'S
U056 -BIT REH‘

EWL F’LH'H
15 FOILED! ™~

WHAT WOULD
ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TELlS US THE. PASSWORD.

GOT IT,

“/Q

http://xkcd.com/538

Best Practices: Key Separation

Key Capabillities
Sign
Certify
Encrypt
Authenticate

Use --expert option to
gpg

Separate keys: If
weakness found In
one key, other keys
may be fine

Best Practices: Key Separation

pub 4096R/5DEA789B

sub 3072R/3FOA7DEA
sub 3072R/63469263
sub 2048R/8D1CO60OE

created: 2010-12-19
trust: unknown

created: 2010-12-19
created: 2010-12-19
created: 2011-02-23

expires: never usage:

validity: unknown

expires: 2012-12-18 usage:
expires: 2012-12-18 usage:
expires: 2013-02-22 wusage:

[unknown] (1). David Tomaschik <david@systemoverlord.com>

> mWwm

Best Practices: When to Sign E-Mail

Always

Some suggest it builds history

Still doesn't prove an unsigned message didn't
come from you

Be careful what you sign — only the body Is signed
Important e-malll

Signifies emall as significant
My personal practice

Best Practices: Signing Files

Be careful signing files you didn't create

Binary files (including doc, docx, odt, etc.) may
have multiple data streams, hidden text, etc.

Sign "significant” files
Off-site backups (really!)
Code, packages, etc.
Not currently in use for legal contracts

May change soon, but need "legal” keyholder
verification

Best Practices: E-mail encryption

Encrypt everything
OpenPGP)

Some overhead

(to recipients with

Many mobile devices don't support GPG or users

don't use GPG on t
Encrypt only the im

nere

portant

Tells an attacker which messages are important

Allows casual messages to be read everywhere

Integration: Uls

GPA KGPG
Standard, Cross- KDE based
Platform GPG only
GTK-based (Non-Linux)

Seahorse GPGTools
n most Ghome OS X Suite
nstallations (Non-Linux)
Highly Integrated

Cryptophane

GPG/SSHY/etc. Windows

ntegration: GPA

GMU Pri ant - Keyring Editor . W [=1[=1[=]

Fil= Edit Keys Windows Help

ﬁﬁ@&@c@@@ﬁ

Delete Skan Irnport Export Brief | Detalled Files
-Fﬁl" Keyring Editor

| |He1,f D |Lber Meirns ﬁ
QAGESTEZ Matthios Wekvasky <mwshvasky@web des

DAF?23180 Mauncio Saint-Supeny <tas@subdirmsnsion.cors

DRDCY71T Michael H. Wariskd <mhw&WittsEnd.corms

FAACTOAC Michasl Mahrath <michas®nahrth.ces

E?DDSFD Michas| Richardson (Zensml Purposs Key 2002) <moer@sandslinan.cos
20P7C149 Michasl Stons <mstons@dsbicin.ong=

2103F52E Microeoft Securnty Responss Center <sscurs@microsoft.corms

RPN

= A Miguel Coco cmococo@gnu.ong> "
=3 DCE514F1 Migusl Mendsz <fynn@ensngyho.homeip.net

=3 EBBDS271 Mike Caudil iChoco PSIRT) < moaudil@cboo.conms.

=3 13098730 Miko Deiodzka (Key Certification only, pleass use my other keys for cormmmunication) <m
=3 92E3EF14 MosbiuZ <mosbiuz@temd s

=3 CA2Z5FI8E MNGSEC Ressamrch Team <kbs@ngesc.comes

=3 HIDICAB] Nathalie Weller <wsller@tik.es.sthz.ch= E’j

L« ————————
Detaik | Signaturss

The key has both o private and a public part
Lesr Mame: Migusl Coca <mococo&gnu.ong=
Miguel Coco <e970025&zipifiuprm.ess
Key ID: 27TRCZACAS
Fingenzrnt: ESOA CBR S246F 914E BAZ1 CAO02 854D CVBS 27RC 3CAS
Expires at: never expires
Crwner Trust: Ubirncte
Key Validity: Fully Walid
Key Type: DSA 1024 bits
Created ot 02/27/00

Selected Default Key: Miguel Coca <mococa@gnu.ongg 2TRC3CAS

Integration: Seahorse

e Encryption Key Manager =[5 =
Key Edit Remote \iew Help

v Filter:

[My Personal Keys | Keys | Trust | Keys 've Collected

MName v Key ID Validity —

First time options:

To get started with encryption you'll need keys. | @Help |

Import existing keys from a file:

Generate a new key of your own: | D [New |

Error opening directory 'fhomef/gnome/.ss

Integration: KGPG

File Edit WView Keys Groups Setings Help

WMy Fina .l'li"- Ky Properies Sign Ky gy IMpon Key o EXpor Public Key . Ky Server Dialsg — Searnch
E ~ Emall Trest Expiration Size Creation iD
L ' i - 1 | x I S | ﬂ-|.-|-|—|. [,

- =y David Faime cifamired® .. 1024 r 1024 2001-05.12 CaE0EE LD

Lrawvid Faure i aredd 2009-11-02 CHEROGE 10
+- 12 Dupd Faurg Ky Sanmr = KGpg B e)
' Chavid Faure
+ Davicl Faure import | Expoit
« oy ElGamal sibsey Ky SEsnnes

* & AL Speiv
4 UH Dty Andirds Fodir ques

hitpo/key's. grupg. net

Text bo sesch or 1D of the key to import

Integration: E-Mall

Thunderbird Also transparent
Enigmail outgoing

KMalil GNU Anubis
Integrated Freenigma

Evolution See Also
Integrated Vim integration

Em Inteqration
Mutt acs integratio

Integrated

Advanced Topic: Smartcards

Physical device that generates and stores keys
and performs signing and encryption operations

OpenPGP Smartcard v2 allows for up to 3 RSA
keys, each up to 3072 bits in size

Sign/Certify
Encryption
Authentication

Sold by Kernel Concepts out of Germany

Smartcard-Specifc Terms

PINSs

Admin PIN
PIN

Similar to passphrase; cards limit length; use only

digits If you intend to use a reader that has a PIN
pad

3 strikes rule

Card Readers

Any CCID or PC/SC-compliant smart card
reader should work

Very common (Amazon, eBay, etc.) with use of
CAC cards for U.S. Military

Also avallable from Kernel Concepts

Requires GPGSM on Debian-derivatives
(S/IMIME support for GPG)

pcscd and pcsc-lite tools (required for PC/SC)

Provides more details if you run into issues

You must use gpg-agent
But you should anyway

If you don't backup your key during the
generation process, you can never retrieve It

Important for security reasons

If you Issue a smartcard command without a
reader In place, scdaemon locks up

pkill -9 scdaemon
gpg-agent will restart scdaemon

gpg —card-status
Use to get card "recognized”
gpg --card-edit

admin

passwd

url

fetch

Generate
gpg --edit-key

keytocard

Authentication

PAM
Poldi

SSH

gpg-agent is a drop-in replacement for ssh-agent
enable-ssh-support

Must disable standard SSH agent, Seahorse, etc.
gpg --card-status

ssh-add -l, ssh-add -L (public key)

Helpful gpg.conf options

default-key
keyserver
use-agent
Helpful gpg-agent.conf options

enable-ssh-support
use-standard-socket

Really Advanced Topics

Monkeysphere

Server ldentification via GhuPG
Like PKI overlaid on Web of Trust
You define your CAs

Key Distribution over DNS

PGP Record ("Long” Record)
PGP Record ("Short” Record)
DNSSEC

Resources

http://gnupg.org

nttp://sks-keyservers.net
RFC 4880

RFC 3156
nttp://keylength.com

nttp://kernelconcepts.de/en

http://gnupg.org/
http://sks-keyservers.net/
http://keylength.com/
http://kernelconcepts.de/en

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

