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What is GnuPG?

GnuPG is the GNU project's complete and free 
implementation of the OpenPGP standard as 

defined by RFC4880 . GnuPG allows to encrypt 
and sign your data and communication, features a 

versatile key management system as well as 
access modules for all kinds of public key 

directories. GnuPG, also known as GPG, is a 
command line tool with features for easy 

integration with other applications. A wealth of 
frontend applications and libraries are available. 
Version 2 of GnuPG also provides support for 

S/MIME.



  

OK.  What is GnuPG?

 Implementation of public-key cryptography
 Conforms to an open standard (OpenPGP)
 Allows for:

 Encryption of Data & Communication
 Signing of Data & Communication
 Authentication



  

About this presentation

 Not a ”cookbook” for GPG
 Overview of what you can do
 Some technical points simplified
 GPG has excellent man pages and 

documentation
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Terminology

 PGP – Pretty Good Privacy
 Original implementation, 1991, by Phil Zimmerman
 Source Available until 2000

 OpenPGP – Standard for implementations
 RFC 4880 (Replaced RFC 2440) (Message format)
 RFC 3156 (e-mail format, PGP/MIME)

 GnuPG – GNU-Project, GPL Implementation
 Mostly PGP Compatible
 Implements all of RFC 4880



  

Motivations: Encryption

 Protect messages against being read except by 
intended recipient(s).

 Intended recipient could be yourself.
 Can exchange secret communications without 

needing any pre-shared secrets.



  

Motivations: Signing

 Digital signatures prove that you wrote/signed a 
given chunk of data. (Non-repudiation)

 Used heavily for code signing, signed 
packages, etc.

 Message integrity (unmodified)



  

Shortcomings

 Encryption
 Anyone with the 

private key can 
decrypt message

 Have to know what 
key to encrypt to 
(anyone can generate 
a key with any UID)

 Signing
 Anyone with the 

private key can sign a 
message

 No proof of WHEN it 
was signed

 No way to prove that 
you did NOT write a 
message



  

How it Works (Simplified)

 Public Key Encryption
 Pair of Keys (Public, 

Private)
 A message encrypted 

to one key can only 
be decrypted by the 
other key

 Computationally 
infeasible to reverse 
calculation

 Encryption
 Sender uses public 

key to encrypt
 Recipient uses private 

key to decrypt

 Signing
 Signer uses private 

key to sign (encrypt)
 Recipient uses public 

key to verify (decrypt)



  

Some Technical Details

 Messages are not 
really encrypted with 
public key 
cryptography
 Encrypted with 

symmetric 
cryptography

 Key then encrypted 
with public-key 
cryptography

 Likewise, messages 
not signed across the 
entire message
 Hash is calculated
 Signed with public-key 

cryptography

 Signing + encryption
 Signed first
 Only recipient verifies



  

OpenPGP Algorithms

 Public-key 
(Asymmetrical)
 RSA(*)
 DSA
 ElGamal
 (Future) ECC

 Symmetrical
 IDEA
 3DES
 CAST5
 AES (*)
 Blowfish
 Twofish

(*) Most often used



  

OpenPGP Algorithms

 Compression
 ZIP
 ZLIB (*)
 BZIP2

 Hashing
 MD-5
 SHA-1 (*)
 RIPE-MD/160
 SHA-2 (Family)

 SHA-256
 SHA-384
 SHA-512
 SHA-224

(*) Most often used



  

Getting Started: Key Generation

$ gpg --gen-key
Please select what kind of key you want:
   (1) RSA and RSA (default)
   (2) DSA and Elgamal
   (3) DSA (sign only)
   (4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 
Requested keysize is 2048 bits



  

Algorithm Choice

 RSA
 ”Safe bet” – very commonly used in a variety of 

applications
 Based on Integer Factorization Problem

 DSA/ElGamal
 A few cryptographers suggest it is SLIGHTLY 

stronger
 Less researched
 Based on Discrete Logarithm Problem

 Both are believed to be secure



  

Key Length

 Do not generate new 1024 bit keys!
 NIST suggests 2048 is secure until 2030.

 3072 secure until ~2040.
 4096 secure until ~2050.

 Quantum computing could change everything.
 Topic for another day, and probably another group.

 Estimates against enterprise/government level 
attackers.

 Keylength.com



  

Getting Started: Key Generation

Please specify how long the key should be valid.
         0 = key does not expire
      <n>  = key expires in n days
      <n>w = key expires in n weeks
      <n>m = key expires in n months
      <n>y = key expires in n years
Key is valid for? (0) 1d
Key expires at Thu 17 Mar 2011 11:06:24 PM EDT
Is this correct? (y/N) y



  

Key Expiration

 Expires
 Key will fall out of use 

if you lose private key
 Update key 

periodically
 Regenerate key and 

get new signatures

 Never expires
 No need to update 

date or regenerate
 May never fall out of 

use if you lose your 
key or compromised



  

Getting Started: Key Generation

You need a user ID to identify your key; the software constructs 
the user ID
from the Real Name, Comment and Email Address in this form:
    "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: David Tomaschik
Email address: david@example.com
Comment: Demo Key Only
You selected this USER-ID:
    "David Tomaschik (Demo Key Only) <david@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o



  

Your Key

gpg: key 36D884AA marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0  valid:   1 signed: 0  trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2011-03-18
pub   2048R/36D884AA 2011-03-17 [expires: 2011-03-18]
Key fingerprint = 5C2E 2066 FB73 5DDC 3E0F
                  E0D7 1D4C 7FE2 36D8 84AA
uid                  David Tomaschik (Demo Key Only) 
<david@example.com>
sub   2048R/AB130331 2011-03-17 [expires: 2011-03-18]



  

Demo: Key Generation

gpg --gen-key



  

Getting Started: Finding Keys

 gpg --recv-keys <keyid>
 gpg --recv-keys 5DEA789B

 gpg --search-keys <UID substring>
 gpg --search-keys david@systemoverlord.com

 Keyserver
 pool.sks-keyservers.net
 pgp.mit.edu

 gpg --refresh-keys

mailto:david@systemoverlord.com


  

Getting Started: Sending Keys

 gpg --send-key
 Make sure you really want the key out there

 Don't publish test keys

 Use again after signing keys
 Only if the original key was on the keyserver
 Considered rude to publish someone's key



  

Keysigning

 Why sign keys?
 Alice wants to e-mail Carol, but doesn't have 

her key
 Alice downloads Carol's key from a keyserver
 But wait! Anyone could generate a key for 

carol@example.com
 Never forget who might have access to e-mail

mailto:carol@example.com


  

Keysigning

 Alice knows Bob who knows Carol
 Alice has met Bob, verified Bob's key, signed 

Bob's key
 Bob has met Carol, verified Carol's key, signed 

Carol's key
 If Alice trusts Bob, Alice can believe this key 

really belongs to Carol



  

Demo: Key Signing

gpg --sign-key



  

Web of Trust

 Connections of signatures between users/keys
 gpg –list-sigs
 OpenPGP model instead of PKI (Certificate 

Authorities)
 Some CAs may not be trustworthy, so some 

consider Web of Trust superior
 Certainly individuals I trust more than many CAs



  

Keysigning Parties/Events

 Help expand your Web of Trust
 Helps verify not only those at party, but also those 

just past that point

 Most effective in cases where you want to 
communicate within that ”social circle”



  

Signing Philosophies

 ID-Based
 Present ID (often 2)
 Match Names to UIDs
 Sign Key

 E-mail based
 Signer sends 

encrypted email to 
signee

 Signee responds with 
signed email

 Proves control of e-
mail address



  

Best Practices: Key Security

 Keep a copy of your key in a secure location
 Use a strong passphrase

 If the file that contains your key is compromised, it 
is encrypted with this passphrase

 Keep a pre-generated revocation certificate 
offline ”just in case”
 This should be secured too



  

Best Practices: Threat Modeling

 U.S. Government
 U.S. v. Boucher
 Probably nothing will 

protect you

 Foreign Government
 Might have law 

compelling you to 
disclose passphrase

 Only if you are there 
or commit crime there

 Corporation
 Unlikely to have 

resources
 Termination for 

improper computer 
use

 Malicious Attacker
 Theft of Key
 Keylogger



  

Threat Modeling

http://xkcd.com/538



  

Best Practices: Key Separation

 Key Capabilities
 Sign
 Certify
 Encrypt
 Authenticate

 Use --expert option to 
gpg

 Separate keys: if 
weakness found in 
one key, other keys 
may be fine



  

Best Practices: Key Separation

pub  4096R/5DEA789B  created: 2010-12-19  expires: never       usage: C   
                     trust: unknown       validity: unknown
sub  3072R/3F0A7DEA  created: 2010-12-19  expires: 2012-12-18  usage: S   
sub  3072R/63469263  created: 2010-12-19  expires: 2012-12-18  usage: E   
sub  2048R/8D1C060E  created: 2011-02-23  expires: 2013-02-22  usage: A   
[ unknown] (1). David Tomaschik <david@systemoverlord.com>



  

Best Practices: When to Sign E-Mail

 Always
 Some suggest it builds history
 Still doesn't prove an unsigned message didn't 

come from you
 Be careful what you sign – only the body is signed

 Important e-mail
 Signifies email as significant
 My personal practice



  

Best Practices: Signing Files

 Be careful signing files you didn't create
 Binary files (including doc, docx, odt, etc.) may 

have multiple data streams, hidden text, etc.

 Sign ”significant” files
 Off-site backups (really!)
 Code, packages, etc.

 Not currently in use for legal contracts
 May change soon, but need ”legal” keyholder 

verification



  

Best Practices: E-mail encryption

 Encrypt everything (to recipients with 
OpenPGP)
 Some overhead
 Many mobile devices don't support GPG or users 

don't use GPG on there

 Encrypt only the important
 Tells an attacker which messages are important
 Allows casual messages to be read everywhere



  

Integration: UIs

 GPA
 Standard, Cross-

Platform
 GTK-based

 Seahorse
 In most Gnome 

Installations
 Highly Integrated
 GPG/SSH/etc.

 KGPG
 KDE based
 GPG only

 (Non-Linux) 
GPGTools
 OS X Suite

 (Non-Linux) 
Cryptophane
 Windows



  

Integration: GPA



  

Integration: Seahorse



  

Integration: KGPG



  

Integration: E-Mail

 Thunderbird
 Enigmail

 KMail
 Integrated

 Evolution
 Integrated

 Mutt
 Integrated

 Also transparent 
outgoing
 GNU Anubis
 Freenigma

 See Also
 Vim integration
 Emacs integration



  

Advanced Topic: Smartcards

 Physical device that generates and stores keys 
and performs signing and encryption operations

 OpenPGP Smartcard v2 allows for up to 3 RSA 
keys, each up to 3072 bits in size
 Sign/Certify
 Encryption
 Authentication

 Sold by Kernel Concepts out of Germany



  

Smartcard-Specifc Terms

 PINs
 Admin PIN
 PIN
 Similar to passphrase; cards limit length; use only 

digits if you intend to use a reader that has a PIN 
pad

 3 strikes rule



  

Card Readers

 Any CCID or PC/SC-compliant smart card 
reader should work
 Very common (Amazon, eBay, etc.) with use of 

CAC cards for U.S. Military
 Also available from Kernel Concepts

 Requires GPGSM on Debian-derivatives 
(S/MIME support for GPG)

 pcscd and pcsc-lite tools (required for PC/SC)
 Provides more details if you run into issues



  

Caveats

 You must use gpg-agent
 But you should anyway

 If you don't backup your key during the 
generation process, you can never retrieve it
 Important for security reasons

 If you issue a smartcard command without a 
reader in place, scdaemon locks up
 pkill -9 scdaemon
 gpg-agent will restart scdaemon



  

Usage

 gpg –card-status
 Use to get card ”recognized”

 gpg --card-edit
 admin
 passwd
 url
 fetch
 Generate

 gpg --edit-key
 keytocard



  

Authentication

 PAM
 Poldi

 SSH
 gpg-agent is a drop-in replacement for ssh-agent
 enable-ssh-support
 Must disable standard SSH agent, Seahorse, etc.
 gpg --card-status
 ssh-add -l, ssh-add -L (public key)



  

Tips

 Helpful gpg.conf options
 default-key
 keyserver
 use-agent

 Helpful gpg-agent.conf options
 enable-ssh-support
 use-standard-socket



  

Really Advanced Topics

 Monkeysphere
 Server Identification via GnuPG
 Like PKI overlaid on Web of Trust
 You define your CAs

 Key Distribution over DNS
 PGP Record (”Long” Record)
 IPGP Record (”Short” Record)
 DNSSEC



  

Resources

 http://gnupg.org
 http://sks-keyservers.net
 RFC 4880
 RFC 3156
 http://keylength.com
 http://kernelconcepts.de/en

http://gnupg.org/
http://sks-keyservers.net/
http://keylength.com/
http://kernelconcepts.de/en
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