

GnuPG: Open Encryption,
Signing and Authentication

David Tomaschik, RHCE, LPIC-1
<david@systemoverlord.com>

http://systemoverlord.com

mailto:david@systemoverlord.com

What is GnuPG?

GnuPG is the GNU project's complete and free
implementation of the OpenPGP standard as

defined by RFC4880 . GnuPG allows to encrypt
and sign your data and communication, features a

versatile key management system as well as
access modules for all kinds of public key

directories. GnuPG, also known as GPG, is a
command line tool with features for easy

integration with other applications. A wealth of
frontend applications and libraries are available.
Version 2 of GnuPG also provides support for

S/MIME.

OK. What is GnuPG?

 Implementation of public-key cryptography
 Conforms to an open standard (OpenPGP)
 Allows for:

 Encryption of Data & Communication
 Signing of Data & Communication
 Authentication

About this presentation

 Not a ”cookbook” for GPG
 Overview of what you can do
 Some technical points simplified
 GPG has excellent man pages and

documentation

Outline

 Background
 Terminology
 Motivations
 General Theory

 Getting Started
 Key Generation
 Choices
 Key Signing

 Best Practices
 Threat Modeling
 Key Separation

 Integration & UIs
 UIs
 E-mail

 Advanced Topics
 Smart Cards
 Authentication

Terminology

 PGP – Pretty Good Privacy
 Original implementation, 1991, by Phil Zimmerman
 Source Available until 2000

 OpenPGP – Standard for implementations
 RFC 4880 (Replaced RFC 2440) (Message format)
 RFC 3156 (e-mail format, PGP/MIME)

 GnuPG – GNU-Project, GPL Implementation
 Mostly PGP Compatible
 Implements all of RFC 4880

Motivations: Encryption

 Protect messages against being read except by
intended recipient(s).

 Intended recipient could be yourself.
 Can exchange secret communications without

needing any pre-shared secrets.

Motivations: Signing

 Digital signatures prove that you wrote/signed a
given chunk of data. (Non-repudiation)

 Used heavily for code signing, signed
packages, etc.

 Message integrity (unmodified)

Shortcomings

 Encryption
 Anyone with the

private key can
decrypt message

 Have to know what
key to encrypt to
(anyone can generate
a key with any UID)

 Signing
 Anyone with the

private key can sign a
message

 No proof of WHEN it
was signed

 No way to prove that
you did NOT write a
message

How it Works (Simplified)

 Public Key Encryption
 Pair of Keys (Public,

Private)
 A message encrypted

to one key can only
be decrypted by the
other key

 Computationally
infeasible to reverse
calculation

 Encryption
 Sender uses public

key to encrypt
 Recipient uses private

key to decrypt

 Signing
 Signer uses private

key to sign (encrypt)
 Recipient uses public

key to verify (decrypt)

Some Technical Details

 Messages are not
really encrypted with
public key
cryptography
 Encrypted with

symmetric
cryptography

 Key then encrypted
with public-key
cryptography

 Likewise, messages
not signed across the
entire message
 Hash is calculated
 Signed with public-key

cryptography

 Signing + encryption
 Signed first
 Only recipient verifies

OpenPGP Algorithms

 Public-key
(Asymmetrical)
 RSA(*)
 DSA
 ElGamal
 (Future) ECC

 Symmetrical
 IDEA
 3DES
 CAST5
 AES (*)
 Blowfish
 Twofish

(*) Most often used

OpenPGP Algorithms

 Compression
 ZIP
 ZLIB (*)
 BZIP2

 Hashing
 MD-5
 SHA-1 (*)
 RIPE-MD/160
 SHA-2 (Family)

 SHA-256
 SHA-384
 SHA-512
 SHA-224

(*) Most often used

Getting Started: Key Generation

$ gpg --gen-key
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits

Algorithm Choice

 RSA
 ”Safe bet” – very commonly used in a variety of

applications
 Based on Integer Factorization Problem

 DSA/ElGamal
 A few cryptographers suggest it is SLIGHTLY

stronger
 Less researched
 Based on Discrete Logarithm Problem

 Both are believed to be secure

Key Length

 Do not generate new 1024 bit keys!
 NIST suggests 2048 is secure until 2030.

 3072 secure until ~2040.
 4096 secure until ~2050.

 Quantum computing could change everything.
 Topic for another day, and probably another group.

 Estimates against enterprise/government level
attackers.

 Keylength.com

Getting Started: Key Generation

Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 1d
Key expires at Thu 17 Mar 2011 11:06:24 PM EDT
Is this correct? (y/N) y

Key Expiration

 Expires
 Key will fall out of use

if you lose private key
 Update key

periodically
 Regenerate key and

get new signatures

 Never expires
 No need to update

date or regenerate
 May never fall out of

use if you lose your
key or compromised

Getting Started: Key Generation

You need a user ID to identify your key; the software constructs
the user ID
from the Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: David Tomaschik
Email address: david@example.com
Comment: Demo Key Only
You selected this USER-ID:
 "David Tomaschik (Demo Key Only) <david@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o

Your Key

gpg: key 36D884AA marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2011-03-18
pub 2048R/36D884AA 2011-03-17 [expires: 2011-03-18]
Key fingerprint = 5C2E 2066 FB73 5DDC 3E0F
 E0D7 1D4C 7FE2 36D8 84AA
uid David Tomaschik (Demo Key Only)
<david@example.com>
sub 2048R/AB130331 2011-03-17 [expires: 2011-03-18]

Demo: Key Generation

gpg --gen-key

Getting Started: Finding Keys

 gpg --recv-keys <keyid>
 gpg --recv-keys 5DEA789B

 gpg --search-keys <UID substring>
 gpg --search-keys david@systemoverlord.com

 Keyserver
 pool.sks-keyservers.net
 pgp.mit.edu

 gpg --refresh-keys

mailto:david@systemoverlord.com

Getting Started: Sending Keys

 gpg --send-key
 Make sure you really want the key out there

 Don't publish test keys

 Use again after signing keys
 Only if the original key was on the keyserver
 Considered rude to publish someone's key

Keysigning

 Why sign keys?
 Alice wants to e-mail Carol, but doesn't have

her key
 Alice downloads Carol's key from a keyserver
 But wait! Anyone could generate a key for

carol@example.com
 Never forget who might have access to e-mail

mailto:carol@example.com

Keysigning

 Alice knows Bob who knows Carol
 Alice has met Bob, verified Bob's key, signed

Bob's key
 Bob has met Carol, verified Carol's key, signed

Carol's key
 If Alice trusts Bob, Alice can believe this key

really belongs to Carol

Demo: Key Signing

gpg --sign-key

Web of Trust

 Connections of signatures between users/keys
 gpg –list-sigs
 OpenPGP model instead of PKI (Certificate

Authorities)
 Some CAs may not be trustworthy, so some

consider Web of Trust superior
 Certainly individuals I trust more than many CAs

Keysigning Parties/Events

 Help expand your Web of Trust
 Helps verify not only those at party, but also those

just past that point

 Most effective in cases where you want to
communicate within that ”social circle”

Signing Philosophies

 ID-Based
 Present ID (often 2)
 Match Names to UIDs
 Sign Key

 E-mail based
 Signer sends

encrypted email to
signee

 Signee responds with
signed email

 Proves control of e-
mail address

Best Practices: Key Security

 Keep a copy of your key in a secure location
 Use a strong passphrase

 If the file that contains your key is compromised, it
is encrypted with this passphrase

 Keep a pre-generated revocation certificate
offline ”just in case”
 This should be secured too

Best Practices: Threat Modeling

 U.S. Government
 U.S. v. Boucher
 Probably nothing will

protect you

 Foreign Government
 Might have law

compelling you to
disclose passphrase

 Only if you are there
or commit crime there

 Corporation
 Unlikely to have

resources
 Termination for

improper computer
use

 Malicious Attacker
 Theft of Key
 Keylogger

Threat Modeling

http://xkcd.com/538

Best Practices: Key Separation

 Key Capabilities
 Sign
 Certify
 Encrypt
 Authenticate

 Use --expert option to
gpg

 Separate keys: if
weakness found in
one key, other keys
may be fine

Best Practices: Key Separation

pub 4096R/5DEA789B created: 2010-12-19 expires: never usage: C
 trust: unknown validity: unknown
sub 3072R/3F0A7DEA created: 2010-12-19 expires: 2012-12-18 usage: S
sub 3072R/63469263 created: 2010-12-19 expires: 2012-12-18 usage: E
sub 2048R/8D1C060E created: 2011-02-23 expires: 2013-02-22 usage: A
[unknown] (1). David Tomaschik <david@systemoverlord.com>

Best Practices: When to Sign E-Mail

 Always
 Some suggest it builds history
 Still doesn't prove an unsigned message didn't

come from you
 Be careful what you sign – only the body is signed

 Important e-mail
 Signifies email as significant
 My personal practice

Best Practices: Signing Files

 Be careful signing files you didn't create
 Binary files (including doc, docx, odt, etc.) may

have multiple data streams, hidden text, etc.

 Sign ”significant” files
 Off-site backups (really!)
 Code, packages, etc.

 Not currently in use for legal contracts
 May change soon, but need ”legal” keyholder

verification

Best Practices: E-mail encryption

 Encrypt everything (to recipients with
OpenPGP)
 Some overhead
 Many mobile devices don't support GPG or users

don't use GPG on there

 Encrypt only the important
 Tells an attacker which messages are important
 Allows casual messages to be read everywhere

Integration: UIs

 GPA
 Standard, Cross-

Platform
 GTK-based

 Seahorse
 In most Gnome

Installations
 Highly Integrated
 GPG/SSH/etc.

 KGPG
 KDE based
 GPG only

 (Non-Linux)
GPGTools
 OS X Suite

 (Non-Linux)
Cryptophane
 Windows

Integration: GPA

Integration: Seahorse

Integration: KGPG

Integration: E-Mail

 Thunderbird
 Enigmail

 KMail
 Integrated

 Evolution
 Integrated

 Mutt
 Integrated

 Also transparent
outgoing
 GNU Anubis
 Freenigma

 See Also
 Vim integration
 Emacs integration

Advanced Topic: Smartcards

 Physical device that generates and stores keys
and performs signing and encryption operations

 OpenPGP Smartcard v2 allows for up to 3 RSA
keys, each up to 3072 bits in size
 Sign/Certify
 Encryption
 Authentication

 Sold by Kernel Concepts out of Germany

Smartcard-Specifc Terms

 PINs
 Admin PIN
 PIN
 Similar to passphrase; cards limit length; use only

digits if you intend to use a reader that has a PIN
pad

 3 strikes rule

Card Readers

 Any CCID or PC/SC-compliant smart card
reader should work
 Very common (Amazon, eBay, etc.) with use of

CAC cards for U.S. Military
 Also available from Kernel Concepts

 Requires GPGSM on Debian-derivatives
(S/MIME support for GPG)

 pcscd and pcsc-lite tools (required for PC/SC)
 Provides more details if you run into issues

Caveats

 You must use gpg-agent
 But you should anyway

 If you don't backup your key during the
generation process, you can never retrieve it
 Important for security reasons

 If you issue a smartcard command without a
reader in place, scdaemon locks up
 pkill -9 scdaemon
 gpg-agent will restart scdaemon

Usage

 gpg –card-status
 Use to get card ”recognized”

 gpg --card-edit
 admin
 passwd
 url
 fetch
 Generate

 gpg --edit-key
 keytocard

Authentication

 PAM
 Poldi

 SSH
 gpg-agent is a drop-in replacement for ssh-agent
 enable-ssh-support
 Must disable standard SSH agent, Seahorse, etc.
 gpg --card-status
 ssh-add -l, ssh-add -L (public key)

Tips

 Helpful gpg.conf options
 default-key
 keyserver
 use-agent

 Helpful gpg-agent.conf options
 enable-ssh-support
 use-standard-socket

Really Advanced Topics

 Monkeysphere
 Server Identification via GnuPG
 Like PKI overlaid on Web of Trust
 You define your CAs

 Key Distribution over DNS
 PGP Record (”Long” Record)
 IPGP Record (”Short” Record)
 DNSSEC

Resources

 http://gnupg.org
 http://sks-keyservers.net
 RFC 4880
 RFC 3156
 http://keylength.com
 http://kernelconcepts.de/en

http://gnupg.org/
http://sks-keyservers.net/
http://keylength.com/
http://kernelconcepts.de/en

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

