Google

Assessing the Embedded Devices On Your Network

David Tomaschik, Google Security Assessments Team

About Me

Security Engineer on Google’s Security Assessments Team
CTF Player

Maker

Hold several certs, but actually proud of OSCP & OSCE

Google

Insecurity of Things

Real World

Google

What & Why?

e Black Box Assessment
o Low Hanging Fruit
o Component of Red Team/Pentest
o Indication of Security Posture
e Target Audience
o Software Security Background
o ~No Electronics Knowledge Needed

Google

Things will look a little different...

e Hardware, Software, and OS all come as part of a package.

e Almost always running a non-Windows 0OS
o Most Common: Linux and VxWorks
o Also Seen: FreeRTOS, eCos, etc.

e Most are non-x86
o ARM, MIPS, PPC

e Often no visibility into internal workings

e Many devices made by hardware companies with no experience in:
o Software
o Security
o Networking

Google

Unique CIA Characteristics

Confidentiality Integrity Availability

e Unexpected Data e Physical Safety e Physical Safety
o Microphone o Elevator Controllers o Elevator Controllers
o Camera o Machinery Controllers o Door Locks

e Unusual Data e Chain Effects
o Biometrics o Power Controllers

Google

A Case Study

Google

What do we know? (Recon)

Google

User manual
FCC Database (fccid.io)

Open it up and take a
look!

Firmware from website

OBi1062 Professional IP Phone

OBi No
600 387 581 c € FC

This dev

Opnn

(1) this

(2) thes f ' v
InChude Loyt 2 ha by Ca lesire ’w;n'l iion

This Class 8 ¢ -

C!’Y.H'.-"! * ’ I y la norme NMBOO03 dwCana
12V1A.DC FCC: 2ADXF-0OBIi1062
www.obihai.com IC: 12644A-0Bi1062 r

What do we know? (Recon)

it

e User manual

e FCC Database (fccid.io)

e Openitup and take a
look!

‘lll_le,IJJIIILI‘IJJllllJlJIIIIIIIIJIIIIIIlI

I

w
=3
-
S
o«
(=
™~
=3

=
=3
o—
=
=)
o
@
o
~
(=3
o

s

U'e]
.
-

>

e Firmware from website

"4

10 20 30
T e ey e o

| || ||||‘| I|HI||HII||I || ||| '“l””l“ ||| vl |IH‘|:|1
0l 0¢ o0 0? 0(_; 0% 0L 08 0600[0l 02 0t OV 0G 09 o2 08 06003

e N Ll

%

Google

What do we know? (Recon)

e User manual
/obi/usbwifi.sh hidden "%s"

e FCC Database (fccid.io) /obi/usbwifi.sh bss %s
/sbin/ifconfig wlan® %s 2>/dev/null

® Open it up and take a /obi/usbwifi.sh aprefresh %s
look!

e Firmware from website
o binwalk
o strings

Google

Live Assessment

Google

Live Assessment

e 2 USB NICs attached to VM
e |solates traffic from testing host
e Capture all traffic
o Bootup can be interesting!
o Find IP from DHCP traffic, ping
sweep
o Maybe MITM HTTP(s)
® nNMmap
o Goall out:it's local.
© nmap -T4 -p- -sV -oA foo <IP>
o NMAP Scripts

Google

Hardware Tricks

What's this?

4 pins, highlighted

DOSTEVNH *

ocs: /&

Google

Hardware Tricks

e Serial Port

e UART (Universal Asynchronous
Receiver Transmitter)

e Not RS-232!

e Cheap USB -> UART adapters '

» T

g

e Don't connect the +V line!

L unmm‘unmmmu“ g o8

Google

Hardware Tricks: Identifying Pins

e Multimeter in Resistance Mode
o Find ground, 0 ohms to ground
elsewhere
e Many ways to identify data pins
o Logic Analyzer

o Oscilloscope 88150 50T S % Ll e O =
o Trial and Error S

e Baud Rate
© LOgiC Analyzer/OSCi“OSCOpe) 7T D (| G G ST G S G G| S| G| G
o GueSS B CTED- S0 OiD GID DD DD O o O DD DD GOmD oD OD OImD

Google

Useful UART

screen /dev/ttyUSBO 115200

File Edit View Search Terminal Help

Hit Esc key to stop autoboot: @
Card did not respond to voltage select!

NAND read: device 0 offset 0x2400000, size Ox400000
4194304 bytes read: OK

NAND read: device 0 offset Ox1c0000, size 0x20000
131872 bytes read: OK
Booting kernel from Legacy Image at 42000000 ...
Image Name: Linux-3.4.20-rt31-dvf-v1.2.4-rc2

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 2972800 Bytes = 2.8 MiB
Load Address: 40008000

Entry Point: 40008000

Verifying Checksum ... OK

Flattened Device Tree blob at 43000000
Booting using the fdt blob at 0x43000000
Loading Kernel Image ... OK

Loading Device Tree to 47bb8000, end 47bbcb7b ..

Starting kernel ...

Uncompressing Linux... done, booting the kernel.
DSPG v1.2.4-rc2 OBiPhone ttysi1

OBiPhone login: root
root@OoBiPhone: ~# I

.

OK

Fuzzing/Debugging

e Status Quo

Emulation is hard(ware)
Watchdog triggers reboot
SIGSEGV handler
Capture state of crash?

m No core files

m Nogdb

O O O O

Google

e First Approach

©)

©)

©)

Cross-compiled gdbserver

Still rebooted each crash

Online approach, not suitable for
fuzzing

Fuzzing/Debugging

e Status Quo e Second Approach
o Emulation is hard(ware) o Modify binary - nop out watchdog,
o Watchdog triggers reboot SIGSEGV
o SIGSEGV handler o Use core pattern across network
o Capture state of crash? echo “|nc foo 9999” >
m No core files /proc/sys/kernel/core_pattern
m Nogdb o Script analysis of core files

o Can fuzz almost fast :)

Google

Advanced Techniques

o JTAG
e Dumping Flash

o In-place
o Chip-off

e Extensive Firmware Modification & Replacement

Google

Summary of Bugs

e Memory Corruption
o Attacker-controlled free
o Many null/invalid ptr dereferences

e Command Injection
o WiFi config is hard, let’s shell out!

e XSRF

o Everywhere

e HTTP “Digest” Auth

o Ignore nonce, URI, etc.

Google

Questions?

@Matir | https://systemoverlord.com

Google

